A Course Agnostic Approach to Predicting Student Success from VLE Log Data Using Recurrent Neural Networks
نویسندگان
چکیده
We describe a method of improving the accuracy of a learning analytics system through the application of a Recurrent Neural Network over all students in a University, regardless of course. Our target is to discover how well a student will do in a class given their interaction with a virtual learning environment. We show how this method performs well when we want to predict how well students will do, even if we do not have a model trained based on their specific course.
منابع مشابه
A committee machine approach for predicting permeability from well log data: a case study from a heterogeneous carbonate reservoir, Balal oil Field, Persian Gulf
Permeability prediction problem has been examined using several methods such as empirical formulas, regression analysis and intelligent systems especially neural networks and fuzzy logic. This study proposes an improved and novel model for predicting permeability from conventional well log data. The methodology is integration of empirical formulas, multiple regression and neuro-fuzzy in a commi...
متن کاملForecast of Iran’s Electricity Consumption Using a Combined Approach of Neural Networks and Econometrics
Electricity cannot be stored and needs huge amount of capital so producers and consumers pay special attention to predict electricity consumption. Besides, time-series data of the electricity market are chaotic and complicated. Nonlinear methods such as Neural Networks have shown better performance for predicting such kind of data. We also need to analyze other variables affecting electricity c...
متن کاملPredicting Student Exam's Scores by Analyzing Social Network Data
In this paper, we propose a novel method for the prediction of a person’s success in an academic course. By extracting log data from the course’s website and applying network analysis methods, we were able to model and visualize the social interactions among the students in a course. For our analysis, we extracted a variety of features by using both graph theory and social networks analysis. Fi...
متن کاملThe optimized model of factors effecting on the Merger and Acquisition from multiple dimensions with neural network approach.
Nowadays, firms apply the merger and acquisition strategy for gaining synergy, increasing the wealth of stockholders, economics of scales, enhancing efficiency, increasing the ability to research and develop, developing the firm and decreasing the risk. Developing an optimized model with the ability to identify the effective variables on the merger and acquisition process has a significant ...
متن کاملEstimation of Total Organic Carbon from well logs and seismic sections via neural network and ant colony optimization approach: a case study from the Mansuri oil field, SW Iran
In this paper, 2D seismic data and petrophysical logs of the Pabdeh Formation from four wells of the Mansuri oil field are utilized. ΔLog R method was used to generate a continuous TOC log from petrophysical data. The calculated TOC values by ΔLog R method, used for a multi-attribute seismic analysis. In this study, seismic inversion was performed based on neural networks algorithm and the resu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017